An Overview of Polymer-based Electrolytes with High Ionic Mobility for advanced Li-solid state battery

Giuseppe Antonio ELIA

M. Falco, S. Porporato, Y. Zhang, M. Zhang, M. Gastaldi, F. Gambino, S. Saffirio, M. Milanesi, H. Darjazi,

Politecnico

di Torino

V. Sperati, A. Piovano, G. Meligrana, C. Gerbaldi

GAME Lab

Department of Applied Science and Technology Politecnico di Torino, Italy

giuseppe.elia@polito.it

Electrochemical energy storage role in decarbonizing EU by 2050

Cathode

(LiCoO₂)

Stationary energy storage

Use of cost-effective solutions for largescale electricity storage derived from renewable resources

Battery technology plays a fundamental role

Electrolyte Anode (graphite)

The mission

Giuseppe Antonio ELIA

Group for Applied Materials and Electrochemistry - Politecnico di Torino

2

LIBs: characteristics and requirements for EVs

Rechargeable LIBs - intercalation chemistry

Development/optimisation of the1st generation electrodes on the market

✓ LiCoO₂ – 274 mAh/g (≈ 150 mAh/g with a cut-off voltage of 4.2 V), Co 60 wt. %

✓ Graphite – 372 mAh/g (LiC₆) ✓ Organic carbonate liquid electrolyte

Current LiB market: main application in portable electronic devices.

Emerging applications: EV & PHEV cars, smart grid energy storage

SEVERAL CHALLENGES

Challenge	enge Short description						
Cost	Improve cost competitiveness of battery active and passive materials	+++					
Fast charging	3-5C fast charging in 10 min to 80 % SOC						
Sustainability	Reduce ecological and social footprint, ensure transparent value chain (battery passport)	+++					
Energy density	High energy anodes with high loading and stable capacities of 1.200 mAh/g - High energy cathodes with high loading and stable capacities up to 300 mAh/g						
Resilient sourcing of battery materials	Increase security of supply by enabling alternatives to Co-rich battery materials	++					
Increase lifetime and cycle life	Improve cycle life of high voltage (2000+) and high- capacity batteries (3000+) to allow for viable 2nd life applications						

Low Cost

- High Energy Density
- High Power
- Safety
- Durability
- Sustainability

Giuseppe Antonio ELIA

Towards all-solid-state: polymer-based electrolytes

- ✓ Desirable shapes and sizes
- / Light-weight (higher energy density)
- ✓ Low cost of fabrication
- $\checkmark~$ Easy disposal at the end of life
- ✓ Better safety: no corrosive/explosive liquid leakage and less shortcircuits

<u>Scheme of the EU Plan for "Batteries"</u> energy density >350/400 Wh kg⁻¹ & >1000 Wh L⁻¹ for next-gen of Li-based batteries, fast charge rates above 10C as 2030 target

Li POLYMER-BASED BATTERY

- Safe
- High energy
- Thin
- Flexible
- Leak-free

Giuseppe Antonio ELIA

Polymer-based electrolytes: requirements & characteristics

"non comprehensive" summary of solid polymer electrolyte development in the last decades

Giuseppe Antonio ELIA

Group for Applied Materials and Electrochemistry - Politecnico di Torino

many ideas, plenty

of materials, but...

Polymer-based electrolytes: requirements & characteristics

Requirements

- High ionic conductivity @RT (>1 mS cm⁻¹)
- Li⁺ ion transference number (~1)
- High thermal, chemical and electrochemical stability
- High mechanical robustness (> 150 MPa)
- Excellent compatibility with electrode materials
- Easy disposal at the end of battery life

Li⁺ conduction in ether-polymers by "hopping" on (EO) coordination sites

Most common polymer electrolyte: poly(ethylene) oxide (PEO)

Already industrialized

EV BlueCar in Torino

... it works only in the amorphous state (i.e., above melting T > 60 °C)

- Crystallinity suppression by plasticizers, fillers, grafting, cross-linking, etc.
- Produced by solvent casting (time/energy consuming, hard to remove traces of solvent from the final membrane)

Bolloré Bluebus Giuseppe Antonio ELIA

UV-cured polymer-based electrolytes @ Game Lab

UV-induced free radical polymerization

Polymerization/crosslinking triggered by light radiation

Giuseppe Antonio ELIA

UV-crosslinked PEO-based electrolytes with G4 or RTILs

Giuseppe Antonio ELIA

Gambino et al. / Manuscript in preparation

Giuseppe Antonio ELIA

Evaluation of the composite crystallinity

Crystallinity obtained by thermal analysis (DSC) of the samples for the different PEO-PPC and PEO-PEC mixtures

50 40 30 Crystallinity [%] 20 PEO 30% EO 509 PEO 709 -10 FO 1009 PEO 100% No Salt -20 -10 10 30 50 70 -30 10 20 30 40 50 60 70 80 90 100 0 Temperature (°C) %PEO [%]

Li salts LiTFSI with a fixed amount of [EO]:[Li] 20:1

- The addition of polycarbonates reduces the PEO crystallinity
- The reduced crystallinity is expected to guarantee improved ionic mobility

Gambino et al. / Manuscript in preparation

Giuseppe Antonio ELIA

Evaluation of the composite crystallinity

Crystallinity obtained by thermal analysis (DSC) of the samples for the different PEO-PPC and PEO-PEC mixtures

PC (%)	PEO 4M /PEC formulations		PEO 4M /PPC formulations		PEO 400k /PEC formulations			PEO 400k /PPC formulations				
	Tg PEO (°C)	Tg PEC (°C)	Crystallinity (%)	Tg PEO (°C)	Tg PPC (°C)	Crystallinity (%)	Tg PEO (°C)	Tg PEC (°C)	Crystallinity (%)	Tg PEO (°C)	Tg PPC (°C)	Crystallinity (%)
0	-30	-	35	-30	-	35	-32	-	33	-32	-	33
30	-33	22	33	-34	37	19	-33	25	24	-34	36	22
50	-36	-	1	-31	40	9	-33	23	8	-31	39	11
70	-36	23	0	-33	40	0	-33	21	0	-32	40	0
100	-	21	0	-	26	0	-	21	0	-	26	0

Li salts LiTFSI with a fixed amount of [EO]:[Li] 20:1

- The addition of polycarbonates reduces the PEO crystallinity
- The reduced crystallinity is expected to guarantee improved ionic mobility

Gambino et al. / Manuscript in preparation

Giuseppe Antonio ELIA

Evaluation of the ionic conductivity

Ionic conductivity value at 40°C for the different PEO-PPC and PEO-PEC mixtures

Li salts LiTFSI with a fixed amount of [EO]:[Li] 20:1

- The addition of polycarbonate does not substantially affect the ionic until a threshold of 50%
- The drop in conductivity suggests the 50% as the maximum threshold for the composite

Giuseppe Antonio ELIA

Evaluation of the electrochemical window stability (EWS)

EWS value at 40°C for the different PEO-PPC and PEO-PEC mixtures

Li salts LiTFSI with a fixed amount of [EO]:[Li] 20:1

- The addition of polycarbonate evidences an increase of the EWS
- The stability increase is most likely associated by the superior stability of polycarbonate with respect to PEO polymer

Gambino et al. / Manuscript in preparation

Giuseppe Antonio ELIA

PEO:PEC 1:1 – Lithium Plating and Stripping

UV-Curing of PEO and PCs

Giuseppe Antonio ELIA

Compatibility vs. Li metal

Giuseppe Antonio ELIA

Group for Applied Materials and Electrochemistry - Politecnico di Torino

18

Evaluation of the cycling performance in Li-cells

Electrochemical performances at 70°C for the different PEO-PEC 1:1 mixtures against LiFePO₄ Li salts LiTFSI with a fixed amount of [EO]:[Li] 20:1

- The obtained electrolyte shows good electrochemical behaviour in Li-metal cells
- The good coulombic efficiency evidences excellent interfacial stability

Gastaldi et al. / Manuscript in preparation

Giuseppe Antonio ELIA

Evaluation of the electrolyte degradation mechanism

2.75

2.25

The increased stability is not associated with reduced degradation of the PEC

• The stability is most likely associated with the improved mechanical stability associated with the crosslinking of the membrane

Gastaldi et al. / Manuscript in preparation

Giuseppe Antonio ELIA

Concluding remarks & perspectives

...higher capacities @higher rates @lower cost

1000 Wh L-1

e.g., NMC/Li

>400 Wh kg⁻¹

>1200 Wh L-1

fast charge rates above 10C

2022

2024

2030

2020

GEN 4b \rightarrow All-solid-state Li metal battery

Truly solid polymer and "hybrid" electrolytes amongst most promising solutions

Giuseppe Antonio ELIA

Group for Applied Materials and Electrochemistry - Politecnico di Torino

A holistic approach to nextgen batteries https://battery2030.eu/

- Assessment of interfaces impact

Optimisation of materials/preparation

High voltage, room temperature single-ion polymer electrolyte for safer all-solid-state lithium metal batteries (GA 101069703)

Programma di finanziamento: Piano Triennale della Ricerca (PTR) nell'ambito del Sistema Elettrico Nazionale 2022-2024

21

THE GROUP FOR APPLIED MATERIALS AND ELECTROCHEMISTRY

Gíuseppe Antonío ELIA

Group for Applied Materials and Electrochemistry - Politecnico di Torino

22